Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Andrew R. Cowley, ${ }^{\text {a }}$ Richard I. Cooper, ${ }^{\text {a* }}$ Elena Capito, ${ }^{\text {a }}$ John M $B_{r o w n}{ }^{\text {a }}$ and Alfredo Ricci ${ }^{\text {b }}$

${ }^{\text {a }}$ Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and
${ }^{\mathbf{b}}$ Dipartimento di Chimica Organica 'A. Mangani', Universita di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

Correspondence e-mail:
richard.cooper@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.036$
$w R$ factor $=0.040$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Acetato[1-(oxazolin-2-ylmethyl-кN)indol-2-yl](triphenylphosphine)palladium(II) dichloromethane solvate

The title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}\right)\right]$-$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, crystallizes readily from a mixture of dichloromethane and light petroleum. The structure is one of few examples of palladacycles that incorporate the N-substituent in five-membered-ring heterocycles [Nonoyama \& Nakajima (1998). Polyhedron, 18, 533-543].

Comment

Recently, cyclopalladated oxazoline-based complexes have attracted attention due to their catalytic efficiency and the high potential of the oxazolinyl group as an inducer of chirality (Richards \& Stark, 1997; Denmark et al., 1997). A few complexes based on ortho-palladation of an aryloxazoline in the arene, ferrocene and [2.2]paracyclophane series have been crystallographically characterized (Balavoine et al., 1990; Bölm et al., 2002; Gorunova et al., 2004; Kirsch et al., 2004; Smoliakova et al., 2000). We report here the synthesis and structure of a six-membered indole-fused ortho-palladacycle, (2), which incorporates an N -methyleneoxazoline as a C, N bidentate ligand. We found that the application of of an equimolar amount of the weak electrophilic reagent $\mathrm{Li}_{2} \mathrm{PdCl}_{4}$ in the reaction with indole-derived oxazoline, (1), in EtOH in the presence of AcONa as a base (Smoliakova et al., 2000) led to the formation of a bis-oxazoline coordination complex with no traces of the desired cyclopalladated compound. On the other hand, one of the most efficient cyclopalladation methods is the use of highly electrophilic $\mathrm{Pd}(\mathrm{OAc})_{2}$ in AcOH . By applying this method intramolecular $\mathrm{C}-\mathrm{H}$ bond activation has been achieved and the desired cyclopalladated compound, (2), was obtained in good yield. This is the first crystallographically characterized oxazoline-derived palladacycle with a six-membered chelate ring, but activation of a benzylic $\mathrm{Csp}{ }^{3}$ atom to form a six-ring palladacycle has been reported as an alternative and controllable reaction path in the paracyclophane series (Bölm et al., 2002).

a) $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AcONa}, \mathrm{AcOH}$
b) $\mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

The coordination geometry of the Pd atom closely approaches planarity. The mean plane through the reported atomic positions of the $\mathrm{Pd} / \mathrm{C} / \mathrm{N} / \mathrm{O} / \mathrm{P}$ atoms intersects those of the fragments $\mathrm{C} 1-\mathrm{C} 9 / \mathrm{N} 1, \mathrm{~N} 2 / \mathrm{O} 1 / \mathrm{C} 10-\mathrm{C} 12$ and $\mathrm{O} 2 / \mathrm{O} 3 / \mathrm{C} 13 /$ C14 at 39.80 (10), 36.1 (2) and $84.43(16)^{\circ}$, respectively.

Received 2 December 2004 Accepted 10 December 2004 Online 26 February 2005

The molecular structure of (2). Displacement ellipsoids are drawn at the 50% probability level.

The solvent interacts with neighbouring molecules of the Pd complex. One of these interactions is apparently through a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to the carbonyl O atom [C33.. O3 $=3.129(5) \AA$], while there is a second short contact between the oxazolinyl O atom and one of the Cl atoms of a second molecule of solvent $\left[\mathrm{O} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}=3.030\right.$ (3) \AA; symmetry code: (i) $-x,-y, 1-z]$.

Experimental

A mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(52 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\mathrm{AcONa}(32 \mathrm{mg}$, 0.23 mmol) was partially dissolved in acetic acid (1 ml). Oxazoline, (1) $(50 \mathrm{mg}, 0.25 \mathrm{mmol})$, was dissolved in $\mathrm{AcOH}(1 \mathrm{ml})$. The two solutions were combined and stirred at room temperature overnight. The reaction mixture was then stirred at 323 K for 1 h and 24 h at room temperature. The mixture was filtered through Celite, the solvent removed and the yellow solid was dried in vacuo. Degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and $\mathrm{PPh}_{3}(66 \mathrm{mg}, 0.25 \mathrm{mmol})$ were then added to the solid and the mixture was stirred at room temperature for 2 h under an argon atmosphere. Addition of light petroleum ether to the solution resulted in precipitation of a yellow solid. Recrystallization of the crude product from dichloromethane and hexane gave the yellow product, (2), with an overall yield of 70%. Full spectroscopic and physical characterization will be reported elsewhere.

Crystal data

```
[Pd(C}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{2}{})(\mp@subsup{\textrm{C}}{18}{}\mp@subsup{\textrm{H}}{15}{}\textrm{P})
    (C12 H11 N2O)]}\cdot\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{Cl}}{2}{
Mr=711.90
Triclinic, P\overline{1}
a=10.3125 (2) \AA
b=10.9019 (2) \AA
c=16.4409 (5) \AA
\alpha=71.7446 (9)
\beta=75.0748 (9)}\mp@subsup{}{}{\circ
\gamma=62.0330 (10)
V=1536.81(6) \AA}\mp@subsup{\AA}{}{3
```

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.538 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 20892 \\
& \quad \text { reflections } \\
& \theta=5-28^{\circ} \\
& \mu=0.87 \mathrm{~mm}^{-1} \\
& T=150 \mathrm{~K} \\
& \text { Plate, pale yellow } \\
& 0.24 \times 0.20 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection
Nonius KappaCCD diffractometer
ω scans
Absorption correction: multi-scan
$D E N Z O / S C A L E P A C K$
$\quad($ Otwinowski \& Minor, 1997)
$T_{\min }=0.81, T_{\max }=0.96$
20892 measured reflections

6983 independent reflections 4899 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-21 \rightarrow 21$

Refinement

Refinement on F
$R=0.036$
$w R=0.040$
$S=1.10$
4899 reflections
379 parameters

H-atom parameters constrained
Weighting scheme: see text
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.61 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Pd} 1-\mathrm{C} 1$	$1.995(3)$	$\mathrm{Pd} 1-\mathrm{O} 2$	$2.075(2)$
$\mathrm{Pd} 1-\mathrm{N} 2$	$2.079(3)$	$\mathrm{Pd} 1-\mathrm{P} 1$	$2.2425(9)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$87.95(12)$	$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{C} 2$	$133.7(2)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{O} 2$	$175.71(11)$	$\mathrm{Pd} 1-\mathrm{C} 1-\mathrm{N} 1$	$118.6(2)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{O} 2$	$87.79(10)$	$\mathrm{Pd} 1-\mathrm{P} 1-\mathrm{C} 15$	$112.13(11)$
$\mathrm{C} 1-\mathrm{Pd} 1-\mathrm{P} 1$	$92.34(9)$	$\mathrm{Pd} 1-\mathrm{P} 1-\mathrm{C} 21$	$114.12(11)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{P} 1$	$175.51(9)$	$\mathrm{Pd} 1-\mathrm{P} 1-\mathrm{C} 27$	$116.38(11)$
$\mathrm{O} 2-\mathrm{Pd} 1-\mathrm{P} 1$	$91.87(7)$		
$\mathrm{C} 33 \cdots \mathrm{O} 3$	$3.129(5)$	$\mathrm{O} 1 \cdots \mathrm{C} 11^{i}$	$3.030(3)$

Symmetry code: (i) $-x,-y, 1-z$.
The weighting scheme was $w=\left[1-\left\{\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / 6 \sigma\left(F_{o}\right)\right\}^{2}\right]^{2} /$ $\left[0.391 T_{0}(x)+0.126 T_{1}(x)+0.171 T_{2}(x)\right]$, using a second-order Chebychev polymial, with $x=F_{c} / F_{\max }$ (Watkin, 1994; Prince, 1982).

All H atoms were placed in geometrically calculated positions after each refinement cycle, with $X-\mathrm{H}=1.0 \AA ; U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ of the connected atom.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

The authors thank EPSRC for funding for crystallographic equipment (No. GR/N64885).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Balavoine, G., Clinet, J. C., Zerbib, P. \& Boubekeur, K. (1990). J. Organomet. Chem. 389, 259-275.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bölm, C., Wenz, K. \& Raabe, G. (2002). J. Organomet. Chem. 662, $23-33$.
Denmark, S. E., Stavenger, R. A., Faucher, A.-M. \& Edwards, J. P. (1997). J. Org. Chem. 62, 3375-3389.
Gorunova, O. N., Keuseman, K. J., Goebel, B. M., Kataeva, N. A., Churakov, A. V., Kuz'mina, L. G., Dunina, V. V. \& Smoliakova, I. P. (2004). J. Organomet. Chem. 689, 2382-2394.
Kirsch, S. F., Overman, L. E. \& Watson, M. P. (2004). J. Org. Chem. 69, 81018104.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Nonoyama, M. \& Nakajima, K. (1998). Polyhedron, 18, 533-543.

metal-organic papers

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 104. New York: Springer-Verlag.
Richards, C. J. \& Stark, M. A. (1997). Tetrahedron Lett. 38, 5881-5884.

Smoliakova, I. P., Keuseman, K. J., Haagenson, D. C., Wellmann, D. M., Colligan, P. B., Kataeva, N. A., Churakov, A. V., Kuz'mina, L. G. \& Dunina, V. V. (2000). J. Organomet. Chem. 603, 86-97.

Watkin, D. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

